就比如现在。
虽然他并没有专业地训练过作图的能力,仅仅只是阅读过相关的书籍,但手臂的肌肉却像是已经记忆了这些动作一样,即便是随手地一笔一划,也都像尺规作图那般标准。
看着陆舟画图的动作,王院士眯了眯眼睛,瞳孔中闪过了一丝意外的神色。
“你还学过机械绘图?”
“没有,”淡淡笑了笑,陆舟随口说道,“可能是研究几何问题的时候,画的图比较多吧。”
听到这个解释,王院士一脸不相信的表情。
虽然他没研究过数学问题,但就算用脚想都知道,工程学上的作图和数学上的作图完全不是一回事儿。
就这娴熟的笔画,没有个三五年的从业经验,是不可能做到的。
不管王院士信不信,陆舟也没有必要在这种无关紧要的事情上做任何解释,只是一心一意地专注于手上的工作。
先是用线条简单地勾勒出了仿星器的轮廓,然后再在此基础上简单地勾勒出了发电机组的结构。
盯着图上越来越多、越来越清晰的线条,王院士渐渐看出了一些门道,眉毛饶有兴趣地抬了起来。
“磁流体发电?”
“没错,”停下了手中的比,陆舟对着这张草图看了看,满意地点了点头,“以我的水平也只能画到这种程度了,具体的设计,还得麻烦你们这些专家了。”
和可控聚变技术一样,磁流体发电技术并不是什么特别新鲜的概念,甚至可以说有相当久远的历史了。
甚至于从时间线上来看,这个概念最早是和“燃气-蒸汽轮机联合循环技术(GTCC)”一起被提出的。
上世纪八十年代的时候,磁流体发电技术甚至被纳入为863计划的重点项目,而且在重视程度上,被放在了和核裂变发电技术并列的地位。
考虑到863计划的全称是《关于跟踪世界战略性高科技发展的建议》,跟踪的项目基本上都是当时国际学术界的热门研究方向,由此便不难看出,在当时国际学术界,磁流体发电技术可以说是热门一时。
然而随着进入了二十世纪后半叶,情况却是发生了变化。
航天、军备竞赛使得发动机技术以及燃气运用技术得到了迅猛的发展,GTCC技术从中借鉴并汲取了大量经验,最终实现了弯道超车的逆袭。
而相比之下,磁流体技术虽然具备着看似更加诱人的前景,但因为技术原因难以实现,经济效益跟不上市场需求,几十年都拿不出像样的成果,以至于渐渐被学术界和工业界主流所抛弃。
盯着这张草图,王院士摇了摇头:“恕我直言,磁流体发电技术还不完善,用它来发电恐怕不是一个合适的选择。当今世界核裂变反应堆,主要还是以压水堆为主,我从未听说过有哪个核电站用磁流体发电技术输出电能。”
似乎是料到王院士会这么说,陆舟笑了笑,继续说道
“对于核裂变来说是如此,但对于核聚变来说却不尽然。”
“哦?”王院士的脸上浮现了意外的表情,将询问的视线投向了陆舟,“怎么说?”
陆舟:“磁流体发电技术的难点,无非是在气体电离的那部分。通常情况下很难将气体加热至2000度高温并形成等离子体束流,而且即便做到了,这一过程也很可能伴随着大量的热能损耗,因此磁流体发电技术的循环效率很难做到20%以上……我说的对吗?”
王院士点了点头,认同道:“基本上是这样的。”
虽然别的问题也存在,但无疑这是最主要的。
磁流体发电机并不是没有,很多实验室也能做得出来,有燃煤的也有燃油的,但几乎没有人能够将能量转化效率做到20%以上。
但如果是核聚变的话……
“如过是核聚变的话,我们根本不存在这个问题,”看着王院士询问的表情,陆舟笑了笑继续说道,“毕竟DT聚变产生的核废料,本身便是上亿度的氦气。”
听到这里,王院士的表情微微动容,立刻再次看向了那张草图,迅速反应了过来。
众所周知,磁流体发电的原理便是将易于电离的气体加热至2000度高温,电离成导电的等离子体束流,并使其在磁场中高速流动时,切割磁力线,产生感应电动势。
而仿星器内由“D T”聚变反应生成的氦气,本身便是以上亿度高温的等离子体形式存在着!
也就是说,他们无需再去花费更多的精力加热电离气体,只需要将这些携带着庞大能量的等离子体利用起来便可!
这项技术用在燃煤、燃油甚至是核裂变发电上虽然是鸡肋无疑,但放到核聚变发电身上,简直就是为它身定做的!
倒不如说,用那些高温等离子体去烧开水,反而才是一种浪费。
想到这里,盯着那张草图的王院士,眼中渐渐浮现了兴奋的神色。
再次抬起头看向了陆舟,他用慎重的语气开口说道。
“你说的有点道理……理论上似乎也是可以实现的,但现在我没办法给你一个准确的答复,我需要回去和组里的其他专家讨论下。”
接着,他再次看向了那张草图。
“这张草图我可以带回去吗?”
“当然可以,”陆舟欣然点头道,“我期待着你的好消息。”