用“小说阁”微信小程序追更新速度快!
永久免费无需下载,还能切换源站追更
进入微信小程序
054 你们是我带过最优秀的一届

下午的课是数论与密码,属于专业选修课。

不过一般来说应用数学专业的学生们大都会选这门课,毕竟理论课时48个,学分却有4个,性价比极高。

顾名思义,这门课讲的是数论在密码体系中的应用,属于应用数学下面一个分支。

不过是本科内容,所以讲述得并不是很深入,基本上就是讲一些初等数论跟密码信息学的发展史,其实真要学进去了也很有意思,哪怕是最初级的凯撒密码,会玩的也能弄出故事来。

江大下午上课时间是2点零5分。

宁为赶到教室的时候已经整整迟到了十分钟。

更可气的是,后门还锁了。

宁为正站在前门踌躇,想着要不干脆直接逃课算了的时候,好巧不巧,讲台上老师喊了他的名字。

“宁为,来回答一下这个问题。”

站在门外的宁为犹豫了两秒,要不要这么巧?

“嗯?宁为没来吗?”

闹心!

“报告教授,我来了。”宁为面红耳赤的站了门口,换来讲台下一阵欢笑声。

“嗯?”

讲台上的陈教授推了推眼镜,侧头看了眼站在门口提着笔记本包的宁为,没气,反而乐了:“咦?你就是宁学神啊?话说,你这是不是算到了今天我会点你?特意跑来配合一下我的?”

“报告教授,李导让我去给他送份材料,所以迟到了。”

“哦,那行,你进来吧,顺便来看看这个问题,怎么解?”

在同学的笑声中走进教室,扫了眼投影仪上PPT上的内容,椭圆曲线加密。

很快,椭圆曲线的基本运算规则便在他的脑海中梳理了一遍,加法、二倍运算、正负取反、无限远点、有限域……

然后解题过程跟答案如同呼吸般,自然而然的出现在脑海中。

“报告教授,因为有限域GF(p)上的椭圆曲线y?=x? ax b,若P(Xp,Yp),Q(Xq,Yq),且P≠-Q,则R(Xr,Yr)=P Q应该由如下规则确定……”

“等等,你这我哪记得住,到讲台上来板书。”陈教授直接叫停了宁为。

无奈,宁为把笔记本放在讲桌上,拿起了电子笔,开始板书。

“Xr=(λ?-Xp-Xq)modp

👉丨点击进入微信小程序“小说阁”免费阅读丨👈

→如无内容,点击此处重加载内容←
多次加载无内容,请点页面中间弹出菜单换源阅读!



换源
目录
设置
夜间
日间
报错
章节目录
换源阅读
章节报错

点击弹出菜单

提示
微信小程序“小说阁”可换源免费阅读,点击跳转微信小程序阅读~